Suppression of FPR2 expression inhibits inflammation in preeclampsia by improving the biological functions of trophoblast via NF-κB pathway

抑制FPR2表达可通过NF-κB通路改善滋养细胞的生物学功能来抑制先兆子痫中的炎症

阅读:6
作者:Shuxian Li #, Anna Li #, Liping Zhai #, Yaqiong Sun, Ling Yu, Zhenya Fang, Lin Zhang, Yanjie Peng, Meihua Zhang, Xietong Wang

Conclusion

Suppression of FPR2 expression alleviated the effects of inflammation induced by LPS on trophoblasts via the NF-κB signaling pathway, which provided a novel and potential strategy for the treatment of PE.

Methods

The expression of FPR2 in placenta was detected by immunohistochemical staining and western blotting. Transfection of siRNA was used to knockdown FPR2 in HTR-8/SVneo cells. Inflammatory cytokines were detected by ELISA. CCK8, Transwell, wound healing, FACS and tube formation assays were performed to observe the abilities of cell proliferation, migration, invasion, apoptosis and angiogenesis. Western blotting was implemented to clarify that NF-κB signaling pathway was downstream of FPR2.

Purpose

The dysfunction of trophoblast during inflammation plays an important role in PE. Formyl peptide receptor 2 (FPR2) plays crucial roles in the development of inflammation-associated disease. This present study aimed to explore the effect of FPR2 on a trophoblast cellular model of preeclampsia.

Results

The expression levels of FPR2 were higher in placental tissues of patients with PE. Knockdown of FPR2 expression by siFPR2 or inhibition of its activity by WRW4 decreased the release of proinflammatory cytokines in HTR8/SVneo cells treated with LPS. Knockdown of FPR2 expression or inhibition of its activity further reversed the LPS-induced attenuation of the proliferation, migration, invasion and angiogenesis and increase in apoptosis in HTR8/SVneo cells. Moreover, the NF-κB signaling pathway was activated in both placental tissues of patients with PE and LPS-treated HTR8/SVneo cells. However, the activation was attenuated when FPR2 was knocked down or inhibited.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。