Alkbh1-mediated DNA N6-methyladenine modification regulates bone marrow mesenchymal stem cell fate during skeletal aging

Alkbh1介导的DNA N6-甲基腺嘌呤修饰调节骨骼衰老过程中骨髓间充质干细胞的命运

阅读:6
作者:Guang-Ping Cai, Ya-Lin Liu, Li-Ping Luo, Ye Xiao, Tie-Jian Jiang, Jian Yuan, Min Wang

Conclusions

Our findings demonstrated that Alkbh1 regulated BMSCs fate and bone-fat balance during skeletal aging and provided a potential target for the treatment of osteoporosis.

Methods

Bone marrow mesenchymal stem cells (BMSCs)-specific Alkbh1 knockout mice were used to investigate the role of Alkbh1 in bone metabolism. Western blot, qRT-PCR, and immunofluorescent staining were used to evaluate the expression of Alkbh1 or optineurin (optn). Micro-CT, histomorphometric analysis, and calcein double-labeling assay were used to evaluate bone phenotypes. Cell staining and qRT-PCR were used to evaluate the osteogenic or adipogenic differentiation of BMSCs. Dot blotting was used to detect the level of N6-mA in genomic DNA. Chromatin immunoprecipitation (Chip) assays were used to identify critical targets of Alkbh1. Alkbh1 adeno-associated virus was used to overexpress Alkbh1 in aged mice.

Results

Alkbh1 expression in BMSCs declined during aging. Knockout of Alkbh1 promoted adipogenic differentiation of BMSCs while inhibited osteogenic differentiation. BMSC-specific Alkbh1 knockout mice exhibited reduced bone mass and increased marrow adiposity. Mechanistically, we identified optn as the downstream target through which Alkbh1-mediated DNA m6A modification regulated BMSCs fate. Overexpression of Alkbh1 attenuated bone loss and marrow fat accumulation in aged mice. Conclusions: Our findings demonstrated that Alkbh1 regulated BMSCs fate and bone-fat balance during skeletal aging and provided a potential target for the treatment of osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。