Roles for H+ /K+ -ATPase and zinc transporter 3 in cAMP-mediated lysosomal acidification in bafilomycin A1-treated astrocytes

H+ /K+ -ATPase 和锌转运蛋白 3 在 bafilomycin A1 处理的星形胶质细胞中 cAMP 介导的溶酶体酸化中的作用

阅读:5
作者:Huikyong Lee, Jae-Young Koh

Abstract

Vacuolar ATPase (v-ATPase) is the main proton pump that acidifies vesicles such as lysosomes. Disruption in the lysosomal localization of v-ATPase leads to lysosomal dysfunction, thus contributing to the pathogenesis of lysosomal storage disorders and neurodegenerative diseases such as Alzheimer's disease. Recent studies showed that increases in cyclic AMP (cAMP) levels acidify lysosomes and consequently enhance autophagy flux. Although the upregulation of v-ATPase function may be the key mechanism underlying the cAMP-mediated lysosomal acidification, it is unknown whether a mechanism independent of v-ATPase may be contributing to this phenomenon. In the present study, we modeled v-ATPase dysfunction in brain cells by blocking lysosomal acidification in cortical astrocytes through treatment with bafilomycin A1, a selective v-ATPase inhibitor. We observed that cAMP reversed the pH changes via the activation of protein kinase A; interestingly, cAMP also increased autophagy flux even in the presence of bafilomycin A1, suggesting the presence of an alternative route of proton entry. Notably, pharmacological inhibitors and siRNAs of H+ /K+ -ATPase markedly shifted the lysosomal pH toward more alkaline values in bafilomycin A1/cAMP-treated astrocytes, suggesting that H+ /K+ -ATPase may be the alternative route of proton entry for lysosomal acidification. Furthermore, the cAMP-mediated reversal of lysosomal pH was nullified in the absence of ZnT3 that interacts with H+ /K+ -ATPase. Our results suggest that the H+ /K+ -ATPase/ZnT3 complex is recruited to lysosomes in a cAMP-dependent manner and functions as an alternative proton pump for lysosomes when the v-ATPase function is downregulated, thus providing insight into the potential development of a new class of lysosome-targeted therapeutics in neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。