Single-cell transcriptomic and T cell antigen receptor analysis of human cytomegalovirus (hCMV)-specific memory T cells reveals effectors and pre-effectors of CD8+- and CD4+-cytotoxic T cells

人类巨细胞病毒 (hCMV) 特异性记忆 T 细胞的单细胞转录组和 T 细胞抗原受体分析揭示了 CD8+ 和 CD4+ 细胞毒性 T 细胞的效应器和预效应器

阅读:9
作者:Raunak Kar, Somdeb Chattopadhyay, Anjali Sharma, Kirti Sharma, Shreya Sinha, Gopalakrishnan Aneeshkumar Arimbasseri, Veena S Patil

Abstract

Latent human cytomegalovirus (hCMV) infection can pose a serious threat of reactivation and disease occurrence in immune-compromised individuals. Although T cells are at the core of the protective immune response to hCMV infection, a detailed characterization of different T cell subsets involved in hCMV immunity is lacking. Here, in an unbiased manner, we characterized over 8000 hCMV-reactive peripheral memory T cells isolated from seropositive human donors, at a single-cell resolution by analysing their single-cell transcriptomes paired with the T cell antigen receptor (TCR) repertoires. The hCMV-reactive T cells were highly heterogeneous and consisted of different developmental and functional memory T cell subsets such as, long-term memory precursors and effectors, T helper-17, T regulatory cells (TREGs) and cytotoxic T lymphocytes (CTLs) of both CD4 and CD8 origin. The hCMV-specific TREGs, in addition to being enriched for molecules known for their suppressive functions, showed enrichment for the interferon response signature gene sets. The hCMV-specific CTLs were of two types, the pre-effector- and effector-like. The co-clustering of hCMV-specific CD4-CTLs and CD8-CTLs in both pre-effector as well as effector clusters suggest shared transcriptomic signatures between them. The huge TCR clonal expansion of cytotoxic clusters suggests a dominant role in the protective immune response to CMV. The study uncovers the heterogeneity in the hCMV-specific memory T cells revealing many functional subsets with potential implications in better understanding of hCMV-specific T cell immunity. The data presented can serve as a knowledge base for designing vaccines and therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。