Differentiation of human spermatogonial stem cells using a human decellularized testicular scaffold supplemented by platelet-rich plasma

使用富含血小板血浆的人类脱细胞睾丸支架分化人类精原干细胞

阅读:8
作者:Maryam Salem, Narjes Feizollahi, Ayob Jabari, Mohammad Ghasem Golmohammadi, Armaghan Shirinsokhan, Nasrin Ghanami Gashti, Alieh Bashghareh, Aghbibi Nikmahzar, Yasaman Abbasi, Mohammad Naji, Mehdi Abbasi

Background

Effective culture systems for attachment, migration, proliferation, and differentiation of spermatogonial stem cells (SSCs) can be a promising therapeutic modality for preserving male fertility. Decellularized extracellular matrix (ECM) from native testis tissue creates a local microenvironment for testicular cell culture. Furthermore, platelet-rich plasma (PRP) contains various growth factors for the proliferation and differentiation of SSCs.

Conclusion

Our study demonstrated that DTM supplemented with PRP can provide an effective culture system for the differentiation and viability of SSCs.

Methods

In this study, human testicular cells were isolated and cultured for 4 weeks, and SSCs were characterized using immunocytochemistry (ICC) and flow cytometry. Human testicular tissue was decellularized (0.3% SDS, 1% Triton), and the efficiency of the decellularization process was confirmed by histological staining and DNA content analysis. SSCs were cultured on the human decellularized testicular matrix (DTM) for 4 weeks. The viability and the expression of differentiation genes were evaluated by MTT and real-time polymerase chain reaction (PCR), respectively.

Results

Histological evaluation and DNA content analysis showed that the components of ECM were preserved during decellularization. Our results showed that after 4 weeks of culture, the expression levels of BAX, BCL-2, PLZF, and SCP3 were unchanged, while the expression of PRM2 significantly increased in the cells cultured on DTM supplemented with PRP (ECM-PRP). In addition, the expression of GFRA1 was significantly decreased in the ECM group compared to the control and PRP groups. Furthermore, the MTT test indicated that viability was significantly enhanced in cells plated on DTM supplemented with PRP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。