Epigallocatechin-3-gallate Inhibits LPS-Induced NF-κB and MAPK Signaling Pathways in Bone Marrow-Derived Macrophages

表没食子儿茶素没食子酸酯抑制骨髓来源的巨噬细胞中 LPS 诱导的 NF-κB 和 MAPK 信号通路

阅读:7
作者:So-Young Joo, Young-A Song, Young-Lan Park, Eun Myung, Cho-Yun Chung, Kang-Jin Park, Sung-Bum Cho, Wan-Sik Lee, Hyun-Soo Kim, Jong-Sun Rew, Nack-Sung Kim, Young-Eun Joo

Aims

Epigallocatechin-3-gallate (EGCG), the primary catechin in green tea, has anti-inflammatory and anti-oxidative properties. The aim of the current study was to characterize the impact of EGCG on lipopolysaccharide (LPS)-induced innate signaling in bone marrow-derived macrophages (BMMs) isolated from ICR mice.

Background/aims

Epigallocatechin-3-gallate (EGCG), the primary catechin in green tea, has anti-inflammatory and anti-oxidative properties. The aim of the current study was to characterize the impact of EGCG on lipopolysaccharide (LPS)-induced innate signaling in bone marrow-derived macrophages (BMMs) isolated from ICR mice.

Conclusions

These results indicate that EGCG may prevent LPS-induced pro-inflammatory gene expression through blocking NF-κB and MAPK signaling pathways in BMMs.

Methods

The effect of EGCG on LPS-induced pro-inflammatory gene expression and nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-polymerase chain reaction, Western blotting, immunofluorescence, and the electrophoretic mobility shift assay.

Results

EGCG inhibited accumulation of LPS-induced IL-12p40, IL-6, MCP-1, ICAM-1, and VCAM-1 mRNA in BMMs. EGCG blocked LPS-induced IκBα degradation and RelA nuclear translocation. EGCG blocked the DNA-binding activity of NF-κB. LPS-induced phosphorylation of ERK1/2, JNK, and p38 was inhibited by EGCG. U0126 (an inhibitor of MEK-1/2) suppressed the LPS-induced IL-12p40, IL-6, MCP-1, ICAM-1, and VCAM-1 mRNA accumulation in BMMs. Conclusions: These results indicate that EGCG may prevent LPS-induced pro-inflammatory gene expression through blocking NF-κB and MAPK signaling pathways in BMMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。