Synthetic PreImplantation Factor (sPIF) induces posttranslational protein modification and reverses paralysis in EAE mice

合成植入前因子 (sPIF) 诱导翻译后蛋白质修饰并逆转 EAE 小鼠的瘫痪

阅读:6
作者:Soren Hayrabedyan, Reut Shainer, Zhanna Yekhtin, Lola Weiss, Osnat Almogi-Hazan, Reuven Or, Charles L Farnsworth, Scott Newsome, Krassimira Todorova, Michael J Paidas, Chaya Brodie, Eytan R Barnea, Martin Mueller

Abstract

An autoimmune response against myelin protein is considered one of the key pathogenic processes that initiates multiple sclerosis (MS). The currently available MS disease modifying therapies have demonstrated to reduce the frequency of inflammatory attacks. However, they appear limited in preventing disease progression and neurodegeneration. Hence, novel therapeutic approaches targeting both inflammation and neuroregeneration are urgently needed. A new pregnancy derived synthetic peptide, synthetic PreImplantation Factor (sPIF), crosses the blood-brain barrier and prevents neuro-inflammation. We report that sPIF reduces paralysis and de-myelination of the brain in a clinically-relevant experimental autoimmune encephalomyelitis mice model. These effects, at least in part, are due to post-translational modifications, which involve cyclic AMP dependent protein kinase (PKA), calcium-dependent protein kinase (PKC), and immune regulation. In terms of potential MS treatment, sPIF was successfully tested in neurodegenerative animal models of perinatal brain injury and experimental autoimmune encephalitis. Importantly, sPIF received a FDA Fast Track Approval for first in human trial in autommuninty (completed).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。