Wnt/β-catenin signaling promotes neurogenesis in the diencephalospinal dopaminergic system of embryonic zebrafish

Wnt/β-catenin 信号促进斑马鱼胚胎间脑脊髓多巴胺能系统的神经发生

阅读:8
作者:Markus Westphal, Paolo Panza, Edda Kastenhuber, Johanna Wehrle, Wolfgang Driever

Abstract

Wnt/β-catenin signaling contributes to patterning, proliferation, and differentiation throughout vertebrate neural development. Wnt/β-catenin signaling is important for mammalian midbrain dopaminergic neurogenesis, while little is known about its role in ventral forebrain dopaminergic development. Here, we focus on the A11-like, Otp-dependent diencephalospinal dopaminergic system in zebrafish. We show that Wnt ligands, receptors and extracellular antagonist genes are expressed in the vicinity of developing Otp-dependent dopaminergic neurons. Using transgenic Wnt/β-catenin-reporters, we found that Wnt/β-catenin signaling activity is absent from these dopaminergic neurons, but detected Wnt/β-catenin activity in cells adjacent to the caudal DC5/6 clusters of Otp-dependent dopaminergic neurons. Pharmacological manipulations of Wnt/β-catenin signaling activity, as well as heat-shock driven overexpression of Wnt agonists and antagonists, interfere with the development of DC5/6 dopaminergic neurons, such that Wnt/β-catenin activity positively correlates with their number. Wnt/β-catenin activity promoted dopaminergic development specifically at stages when DC5/6 dopaminergic progenitors are in a proliferative state. Our data suggest that Wnt/β-catenin signaling acts in a spatially and temporally restricted manner on proliferative dopaminergic progenitors in the hypothalamus to positively regulate the size of the dopaminergic neuron groups DC5 and DC6.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。