Alteration of DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells

放射治疗的胶质母细胞瘤干细胞样细胞中 DNA 损伤信号通路谱的改变

阅读:5
作者:Chao Sun, Zhongyong Wang, Wuchao Song, Baomin Chen, Jinshi Zhang, Xingliang Dai, Lin Wang, Jinding Wu, Qing Lan, Qiang Huang, Jun Dong

Abstract

The present study aimed to investigate the alteration of the DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells (GSLCs), and also aimed to explore potential targets for overcoming glioblastoma radioresistance. Serum-free medium was used to isolate and culture GSLCs. Cell growth was detected using a cell counting kit-8 assay and cell sorting analysis was performed by flow cytometry. X-ray irradiation was produced by a Siemens-Primus linear accelerator. Reverse transcription-quantitative polymerase chain reaction (qPCR)was performed to investigate target genes. SPSS 15.0 was used for all statistical analyses. Human glioblastoma U251 and U87 cells were cultured in serum-free medium supplemented with epidermal growth factor and fibroblast growth factor 2, which constitutes tumor sphere medium, and demonstrated sphere formation, with significantly increased the proportion of CD133+ and Nestin+ cells, which are referred to as GSLCs. The present data revealed that treatment with 10 Gy X-ray radiation alters the expression profile of DNA damage-associated genes in GSLCs. The expression levels of 12 genes demonstrated a ≥2-fold increase in the irradiated U87 GSLCs compared with the untreated U87 GSLCs. Three genes, consisting of XPA, RAD50 and PPP1R15A, were selected from the 12 genes by gene functional searching and qPCR confirmatory studies, as these genes were considered to be potential targets for overcoming radioresistance. The expression of XPA, RAD50 and PPP1R15A is significantly increased in U87 and U251 radiation resistant GSLCs, indicating three potential targets for overcoming the radioresistance of GSLCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。