Chemical crystallography by serial femtosecond X-ray diffraction

通过连续飞秒 X 射线衍射进行化学晶体学

阅读:6
作者:Elyse A Schriber #, Daniel W Paley #, Robert Bolotovsky, Daniel J Rosenberg, Raymond G Sierra, Andrew Aquila, Derek Mendez, Frédéric Poitevin, Johannes P Blaschke, Asmit Bhowmick, Ryan P Kelly, Mark Hunter, Brandon Hayes, Derek C Popple, Matthew Yeung, Carina Pareja-Rivera, Stella Lisova, Kensuke To

Abstract

Inorganic-organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties1. This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction2,3 and electron microdiffraction4-11. Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation12,13 and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach14, the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data15-17. We describe the ab initio structure solutions of mithrene (AgSePh)18-20, thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver-silver bonding network that is linked to its divergent optoelectronic properties20. We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。