A Disintegrin and Metalloprotease-22 Attenuates Hypertrophic Remodeling in Mice Through Inhibition of the Protein Kinase B Signaling Pathway

解整合素和金属蛋白酶-22 通过抑制蛋白激酶 B 信号通路减弱小鼠的肥大性重塑

阅读:7
作者:Lingyun Ren, Chuangyan Wu, Kai Yang, Shanshan Chen, Ping Ye, Jie Wu, Anchen Zhang, Xiaofan Huang, Ke Wang, Peng Deng, Xiangchao Ding, Manhua Chen, Jiahong Xia

Background

Severe cardiac hypertrophy can lead to cardiac remodeling and even heart failure in the end, which is a leading cause of cardiovascular disease-related mortality worldwide. A disintegrin and metalloprotease-22 (ADAM22), a member of the transmembrane and secreted metalloendopeptidase family, participates in many biological processes, including those in the cardiovascular system. However, there is no explicit information on whether ADAM22 can regulate the process of cardiac hypertrophy; the effects that ADAM22 exerts in cardiac hypertrophy remain elusive.

Conclusions

The findings demonstrated that ADAM22 negatively regulates the AKT activation and the process of cardiac hypertrophy and may provide new insights into the pathobiological features of cardiac hypertrophy.

Results

We observed significantly increased ADAM22 expression in failing hearts from patients with dilated cardiomyopathy and hypertrophic cardiomyopathy; the same trend was observed in mice induced by transaortic constriction and in neonatal rat cardiomyocytes treated by angiotensin II. Therefore, we constructed both cardiac-specific ADAM22 overexpression and knockout mice. At 4 weeks after transaortic constriction, cardiac-specific ADAM22 knockout, by the CRISPR/Cas9 (clustered regularly interspaced palindromic repeat (CRISPR)-Cas9) system, deteriorated the severity of cardiac hypertrophy in mice, whereas cardiac-specific ADAM22 overexpression mitigated the degrees of cardiac hypertrophy in mice. Similarly, altered ADAM22 expression modulated the angiotensin II-mediated cardiomyocyte hypertrophy in neonatal rat cardiomyocytes. After screening several signaling pathways, we found ADAM22 played a role in inhibition of protein kinase B (AKT) activation. Under the cardiac-specific ADAM22 knockout background, AKT activation was enhanced in transaortic constriction-induced mice and angiotensin II-stimulated neonatal rat cardiomyocytes, with a severe degree of cardiac hypertrophy. Treatment of a specific AKT inhibitor attenuated the transaortic constriction-enhanced AKT activation and cardiac hypertrophy in mice. Conclusions: The findings demonstrated that ADAM22 negatively regulates the AKT activation and the process of cardiac hypertrophy and may provide new insights into the pathobiological features of cardiac hypertrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。