Taxonomic Diversity of Pico-/Nanoeukaryotes Is Related to Dissolved Oxygen and Productivity, but Functional Composition Is Shaped by Limiting Nutrients in Eutrophic Coastal Oceans

皮/纳米真核生物的分类多样性与溶解氧和生产力有关,但功能组成受富营养化沿海海洋中限制性营养物质的影响

阅读:5
作者:Yaping Wang, Guihao Li, Fei Shi, Jun Dong, Eleni Gentekaki, Songbao Zou, Ping Zhu, Xiaoli Zhang, Jun Gong

Abstract

Pico-/nanoeukaryotes (P/NEs) comprise both primary producers and bacterial predators, playing important biogeochemical and ecological roles in the marine microbial loop. Besides the difference in size, these small-sized fractions can be distinguished from microplankton by certain functional and ecological traits. Nevertheless, little information is available regarding patterns of their taxonomic and functional diversity and community composition along environmental gradients in coastal marine ecosystems. In this study, we applied high-throughput sequencing of 18S rRNA gene to assess the taxonomic species richness and community composition of P/NEs in surface waters of Bohai Sea and North Yellow Sea, northern China spanning a 600-km distance during summer and winter of 2011. The richness of operational taxonomic units (OTUs) formed a U-shaped relationship with concentration of chlorophyll a (Chl-a, a proxy of primary productivity), but a stronger, negative relationship with concentration of dissolved oxygen (DO). These two factors also significantly co-varied with the OTU-based community composition of P/NEs. The effect of geographic distance on community composition of P/NEs was negligible. Among the three functional groups defined by trophic traits, heterotrophs had the highest OTU richness, which exhibited a U-shaped relationship with both DO and Chl-a. The community of P/NEs was dominated by heterotrophs and mixotrophs in terms of read numbers, which showed a trade-off along the gradient of phosphate, but no significant changes along DO and Chl-a gradients, indicating functional redundancy. Similarly, the proportion of phototrophs was significantly and positively correlated with the concentration of silicate. Our results indicate that taxonomic and functional composition of P/NEs are decoupled on a regional scale, and limiting nutrients are important factors in modulating functional composition of these microorganisms in the studied area. These findings contribute toward gaining a better understanding of how diversity of small eukaryotes and their functions are structured in coastal oceans and the effect of environmental changes on the structuring process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。