α-hederin regulates glucose metabolism in intestinal epithelial cells by increasing SNX10 expression

α-常春藤素通过增加SNX10表达调节肠上皮细胞的葡萄糖代谢

阅读:7
作者:Hui Feng, Jiani Tan, Qijuan Wang, Tingting Zhou, Liu Li, Dongdong Sun, Minmin Fan, Haibo Cheng, Weixing Shen

Background

Sorting nexin 10 (SNX10) has recently been identified as a critical regulator of colorectal carcinogenesis, whose deletion promoted cell proliferation and survival in human CRC cells, and promoted colorectal tumor growth and upregulated amino-acid metabolism in mice. However, what happens when silencing SNX10 in normal human intestinal epithelial cells (IECs) remains unknown, and no drugs targeting SNX10 have been reported. Here, we first investigated the biological function and underlying mechanisms of SNX10 in normal human IECs, and found that α-hederin, a pentacyclic triterpenoid saponin, has a regulatory effect on SNX10 expression.

Conclusion

We first reported that knockdown of SNX10 in normal human IECs promoted cell proliferation and activated glucose metabolism by activating the mTORC1 pathway. Meanwhile, we first found that α-hederin down-regulated glucose metabolism activity and slowed cell proliferation by increasing SNX10 expression in IECs.

Methods

The transfection approach was used to construct SNX10 stable knockdown cells. Cell proliferation was detected by CCK8, clone formation, EdU, flow cytometry, and wound healing assays. Enzyme activity assays for glucose metabolism, qRT-PCR, western blotting, and immunofluorescence staining were performed to investigate the protein expression of signaling pathways.

Purpose

This study aimed to explore the function of SNX10 in IECs to provide a new target for the prevention and treatment of malignant transformation and the intervention mechanism of α-hederin for further development of potential novel agents targeting SNX10.

Results

Silencing SNX10 promoted cell proliferation and cycle transition in IECs and increased the activity of key enzymes involved in glucose metabolism. Moreover, DEPDC5 expression was significantly decreased following SNX10 knockdown, followed by activation of the mTORC1 pathway. α-hederin reversed the accelerated cell proliferation, cycle progression, and glucose metabolic activity, as well as the activated mTORC1 pathway caused by SNX10 knockdown, by notably increasing SNX10 expression in a dose-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。