Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway

原人参二醇通过 AMPK/SIRT1 信号通路调节肝细胞脂质代谢改善 NAFLD

阅读:5
作者:Yiping Li, Yang Liu, Zhiwei Chen, Kaiyue Tang, Lili Yang, Yuwei Jiang, Jue Wang, Ping Huang, Jianyi Wang, Peiyong Zheng, Haiyan Song

Abstract

Non-alcoholic fatty liver disease (NAFLD) has become one of the main chronic liver diseases worldwide. Protopanaxadiol (PPD), an active compound derived from Gynostemma pentaphyllum, has been found able to improve free fatty acid-induced lipid accumulation in hepatocytes. However, the efficacy of PPD on NAFLD and the underlying mechanism remains unknown. In this study, the mice were fed with a high-fat diet for 22 weeks to induce the NAFLD model, and then were treated with PPD by gavage for 8 weeks. Moreover, AML12 and HepG2 cells induced by free fatty acids for 24 h, were treated with different doses of PPD and/or AMPK or SIRT1 inhibitor to explore the pharmacological mechanism of PPD. The results showed that mice with PPD treatment had significantly reduced liver weight and serum aminotransferase levels, less severe hepatosteatosis, and inflammatory cell infiltration in liver tissues when compared with the model mice. PPD also reversed the down-regulated activation of AMPK and SIRT1 expression as well as the change of lipid metabolism-related molecules in the mice liver tissues. Consistently, the in vitro experiments showed the effect of PPD in ameliorating lipid accumulation in hepatocytes. The inhibitor of AMPK or SIRT1 suppressed the AMPK and SIRT1 signaling and markedly diminished the anti-steatosis effect of PPD. In conclusion, our results prove the ameliorating impact of PPD on NAFLD and also reveal the involvement of regulation of AMPK/SIRT1 signaling pathway-mediated lipid metabolism in the underlying mechanism, suggesting PPD as a potential natural compound for the treatment of NAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。