Conclusions
PrepaCyte-CB was the most flexible method; the only processing type unaffected by volume. Results indicate that processing choice is important depending on your final intended use.
Methods
plasma depletion, density gradient, Hetastarch, a novel method known as PrepaCyte-CB and an automated centrifugal machine. Sepax gives the highest recovery of nucleated cells, an average of 78.8% (SD±21.36). When looking at CD34+ haematopoietic stem cells PrepaCyte-CB provided the greatest recovery at 74.47% (SD±8.89). For volume reduction density gradient was the most effective leaving 0.03×10(6) RBC/ml, 8 times more efficient than its nearest competitor PrepaCyte-CB (p<0.05). Finally PrepaCyte-CB processing left samples with the highest clonogenic potential after processing and more significantly after cryopreservation: 9.23 CFU/10(8) cells (SD±2.33), 1.5 fold more effective than its nearest rival Sepax (p<0.05). Conclusions: PrepaCyte-CB was the most flexible method; the only processing type unaffected by volume.
Results
IN THIS STUDY WE EVALUATED FIVE SEPARATION METHODS: plasma depletion, density gradient, Hetastarch, a novel method known as PrepaCyte-CB and an automated centrifugal machine. Sepax gives the highest recovery of nucleated cells, an average of 78.8% (SD±21.36). When looking at CD34+ haematopoietic stem cells PrepaCyte-CB provided the greatest recovery at 74.47% (SD±8.89). For volume reduction density gradient was the most effective leaving 0.03×10(6) RBC/ml, 8 times more efficient than its nearest competitor PrepaCyte-CB (p<0.05). Finally PrepaCyte-CB processing left samples with the highest clonogenic potential after processing and more significantly after cryopreservation: 9.23 CFU/10(8) cells (SD±2.33), 1.5 fold more effective than its nearest rival Sepax (p<0.05). Conclusions: PrepaCyte-CB was the most flexible method; the only processing type unaffected by volume. Results indicate that processing choice is important depending on your final intended use.
