Strain variations in cone wavelength peaks in situ during zebrafish development

斑马鱼发育过程中锥细胞波长峰值的应变变化

阅读:10
作者:Ralph F Nelson, Annika Balraj, Tara Suresh, Meaghan Torvund, Sara S Patterson

Abstract

There are four cone morphologies in zebrafish, corresponding to UV (U), blue (B), green (G), and red (R)-sensing types; yet genetically, eight cone opsins are expressed. How eight opsins are physiologically siloed in four cone types is not well understood, and in larvae, cone physiological spectral peaks are unstudied. We use a spectral model to infer cone wavelength peaks, semisaturation irradiances, and saturation amplitudes from electroretinogram (ERG) datasets composed of multi-wavelength, multi-irradiance, aspartate-isolated, cone-PIII signals, as compiled from many 5- to 12-day larvae and 8- to 18-month-old adult eyes isolated from wild-type (WT) or roy orbison (roy) strains. Analysis suggests (in nm) a seven-cone, U-360/B1-427/B2-440/G1-460/G3-476/R1-575/R2-556, spectral physiology in WT larvae but a six-cone, U-349/B1-414/G3-483/G4-495/R1-572/R2-556, structure in WT adults. In roy larvae, there is a five-cone structure: U-373/B2-440/G1-460/R1-575/R2-556; in roy adults, there is a four-cone structure, B1-410/G3-482/R1-571/R2-556. Existence of multiple B, G, and R types is inferred from shifts in peaks with red or blue backgrounds. Cones were either high or low semisaturation types. The more sensitive, low semisaturation types included U, B1, and G1 cones [3.0-3.6 log(quanta·μm-2·s-1)]. The less sensitive, high semisaturation types were B2, G3, G4, R1, and R2 types [4.3-4.7 log(quanta·μm-2·s-1)]. In both WT and roy, U- and B- cone saturation amplitudes were greater in larvae than in adults, while G-cone saturation levels were greater in adults. R-cone saturation amplitudes were the largest (50-60% of maximal dataset amplitudes) and constant throughout development. WT and roy larvae differed in cone signal levels, with lesser UV- and greater G-cone amplitudes occurring in roy, indicating strain variation in physiological development of cone signals. These physiological measures of cone types suggest chromatic processing in zebrafish involves at least four to seven spectral signal processing pools.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。