Engineering a Rapid Insulin Release System Controlled By Oral Drug Administration

设计一种口服药物控制的快速胰岛素释放系统

阅读:8
作者:Mohamed Mahameed, Shuai Xue, Bozhidar-Adrian Stefanov, Ghislaine Charpin-El Hamri, Martin Fussenegger

Abstract

Rapid insulin release plays an essential role in maintaining blood-glucose homeostasis in mammalians. Patients diagnosed with type-I diabetes mellitus experience chronic and remarkably high blood-sugar levels, and require lifelong insulin injection therapy, so there is a need for more convenient and less invasive insulin delivery systems to increase patients' compliance and also to enhance their quality of life. Here, an endoplasmic-reticulum-localized split sec-tobacco etch virus protease (TEVp)-based rapamycin-actuated protein-induction device (RAPID) is engineered, which is composed of the rapamycin-inducible dimerization domains FK506 binding protein (FKBP) and FKBP-rapamycin binding protein fused with modified split sec-TEVp components. Insulin accumulation inside the endoplasmic reticulum (ER) is achieved through tagging its C-terminus with KDEL, an ER-retention signal, spaced by a TEVp cleavage site. In the presence of rapamycin, the split sec-TEVp-based RAPID components dimerize, regain their proteolytic activity, and remove the KDEL retention signal from insulin. This leads to rapid secretion of accumulated insulin from cells within few minutes. Using liver hydrodynamic transfection methodology, it is shown that RAPID quickly restores glucose homeostasis in type-1-diabetic (T1DM) mice treated with an oral dose of clinically licensed rapamycin. This rapid-release technology may become the foundation for other cell-based therapies requiring instantaneous biopharmaceutical availability.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。