Nicotinamide riboside kinase-2 inhibits JNK pathway and limits dilated cardiomyopathy in mice with chronic pressure overload

烟酰胺核糖激酶-2 抑制 JNK 通路并限制慢性压力超负荷小鼠的扩张型心肌病

阅读:7
作者:Syeda Kiran Shahzadi, Hezlin Marzook, Rizwan Qaisar, Firdos Ahmad

Abstract

Nicotinamide riboside kinase-2 (NRK-2) has recently emerged as a critical regulator of cardiac remodeling however, underlying molecular mechanisms is largely unknown. To explore the same, NRK2 knockout (KO) and littermate control mice were subjected to trans-aortic constriction (TAC) or sham surgeries and cardiac function was assessed by serial M-mode echocardiography. A mild cardiac contractile dysfunction was observed in the KOs at the early adaptive phase of remodeling followed by a significant deterioration during the maladaptive cardiac remodeling phase. Consistently, NRK2 KO hearts displayed increased cardiac hypertrophy and heart failure (HF) reflected by morphometric parameters as well as increased fetal genes, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expressions. Histological assessment revealed an extensive left ventricular (LV) chamber dilatation accompanied by elevated cardiomyopathy (CM) and fibrosis in the KO hearts post-TAC. In a gain-of-function model, NRK-2 overexpressing in AC16 cardiomyocytes displayed significantly attenuated fetal genes ANP and BNP expression. Consistently, NRK-2 overexpression attenuated angiotensin II (Ang II)-induced cardiomyocyte death. Mechanistically, we identified NRK-2 as a regulator of c-jun N-terminal kinase (JNK) MAP kinase and mitochondrial function where NRK-2 overexpression in human cardiomyocytes markedly suppressed the Ang II-induced JNK activation and mitochondrial depolarization. Thus, our results demonstrate that NRK-2 plays protective roles in pressure overload (PO)-induced dilatative cardiac remodeling and, genetic ablation exacerbates dilated cardiomyopathy (DCM), interstitial collagen deposition, and cardiac dysfunction post-TAC due, in part, to increased JNK activation and mitochondrial dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。