A hnRNPA2B1 agonist effectively inhibits HBV and SARS-CoV-2 omicron in vivo

hnRNPA2B1 激动剂在体内有效抑制 HBV 和 SARS-CoV-2 omicron

阅读:7
作者:Daming Zuo, Yu Chen, Jian-Piao Cai, Hao-Yang Yuan, Jun-Qi Wu, Yue Yin, Jing-Wen Xie, Jing-Min Lin, Jia Luo, Yang Feng, Long-Jiao Ge, Jia Zhou, Ronald J Quinn, San-Jun Zhao, Xing Tong, Dong-Yan Jin, Shuofeng Yuan, Shao-Xing Dai, Min Xu

Abstract

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。