Hirudin prevents vascular endothelial cell apoptosis and permeability enhancement induced by the serum from rat with chronic renal failure through inhibiting RhoA/ROCK signaling pathway

水蛭素通过抑制RhoA/ROCK信号通路抑制慢性肾衰竭大鼠血清所致血管内皮细胞凋亡及通透性增高

阅读:7
作者:Jing Chen, Wenbin Shi, Yan Xu, Huaming Zhang, Bo Chen

Abstract

Endothelial cells injury and activation contribute to arteriovenous fistula (AVF) stenosis. Hirudin (Hiru) can inhibit the activity of thrombin, which was reported to enhance endothelial cell permeability and promote vascular inflammatory responses. RhoA/ROCK signaling pathway is also important in regulating vascular endothelial permeability. This study aimed to investigate the role of Hiru on the viability and permeability of human umbilical vein endothelial cells (HUVECs) following stimulation of serum from rat with chronic renal failure (CRF) and illustrated the effects of Hiru on RhoA/ROCK signaling. Wistar rats were randomly divided into control group and CRF group. Serum from each group was collected to stimulate HUVECs. Proliferation capability was estimated with Cell Count Kit-8 (CCK-8) assay. Transwell assay was performed to determine permeability. Cell apoptosis was examined using Tunel staining. Telomere length and telomerase activity were determined by qPCR. Moreover, the expression of RhoA, ROCK1 and ROCK2 was estimated via western blot. Results showed that the serum from CRF rat significantly inhibited cell viability while enhanced cell permeability and apoptosis. Different concentrations of Hiru prevented the above effects caused by CRF serum. Additionally, Hiru recovered the CRF serum-induced decreased telomere length and telomerase activity. Hiru also inhibited the protein expression of RhoA, ROCK1 and ROCK2, which were activated by CRF serum. Moreover, the ROCK inhibitor, Y27632, exhibited similar effects with Hiru. In conclusion, Hiru-restored HUVECs cell viability, telomere length and telomerase activity, suppressed permeability and apoptosis in the presence of CRF serum might depend on inactivating the RhoA/ROCK signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。