Relationship of Circulating miRNAs with Insulin Sensitivity and Associated Metabolic Risk Factors in Humans

循环 miRNA 与人类胰岛素敏感性及相关代谢风险因素的关系

阅读:6
作者:Elizabeth Ma, Yuchang Fu, W Timothy Garvey

Background

Insulin resistance disrupts metabolic processes and leads to various chronic disease states such as diabetes and metabolic syndrome (MetS). However, the mechanism linking insulin resistance with cardiometabolic disease pathophysiology is still unclear. One possibility may be through circulating microRNAs (c-miRs), which can alter gene expression in target tissues. Our goal was to assess the relationship of c-miRs with insulin sensitivity, as measured by the gold standard, hyperinsulinemic-euglycemic clamp technique.

Conclusions

Our results show that relative levels of circulating miR-16, -107, -33, -150, and -222 are associated with insulin sensitivity and metabolic risk factors, and suggest that multiple miRs may act in concert to produce insulin resistance and the clustering of associated traits that comprise the MetS. Therefore, miRs may have potential as novel therapeutic targets or agents in cardiometabolic disease.

Methods

Eighty-one nondiabetic, sedentary, and weight-stable patients across a wide range of insulin sensitivities were studied. Measurements were taken for blood pressure, anthropometric data, fasting glucose and lipids, and insulin sensitivity measured by clamp. After an initial screening array to identify candidate miRs in plasma, all samples were assessed for relationships between these c-miRs and insulin sensitivity, as well as associated metabolic factors.

Results

miR-16 and miR-107 were positively associated with insulin sensitivity (R2 = 0.09, P = 0.0074 and R2 = 0.08, P = 0.0417, respectively) and remained so after adjustment with body mass index (BMI). After adjusting for BMI, miR-33, -150, and -222 were additionally found to be related to insulin sensitivity. Regarding metabolic risk factors, miR-16 was associated with waist circumference (r = -0.25), triglycerides (r = -0.28), and high-density lipoprotein (r = 0.22), while miR-33 was inversely associated with systolic blood pressure (r = -0.29). No significant relationships were found between any candidate c-miRs and BMI, diastolic blood pressure, or fasting glucose. Conclusions: Our results show that relative levels of circulating miR-16, -107, -33, -150, and -222 are associated with insulin sensitivity and metabolic risk factors, and suggest that multiple miRs may act in concert to produce insulin resistance and the clustering of associated traits that comprise the MetS. Therefore, miRs may have potential as novel therapeutic targets or agents in cardiometabolic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。