Dietary Supplementation with Bupleuri Radix Reduces Oxidative Stress Occurring during Growth by Regulating Rumen Microbes and Metabolites

日粮中添加柴胡可通过调节瘤胃微生物和代谢物减少生长过程中发生的氧化应激

阅读:5
作者:Cheng Pan, Haiyan Li, Fuqiang Wang, Jianping Qin, Yanping Huang, Wangsheng Zhao

Abstract

Oxidative stress (OS) in ruminants is closely associated with disease; thus, improving antioxidant capacity is an important strategy for maintaining host health. Bupleuri Radix (BR) could significantly improve host health and stress levels. However, the clear antioxidant mechanism of the function of BR remains unknown. In the current study, LC-MS metabolomics combined with 16S rRNA gene sequencing was employed to explore the effects of BR on rumen microbiota and metabolites in Shanbei Fine-Wool Sheep (SFWS), and Spearman correlation analyses of rumen microbiota, metabolites, and OS were performed to investigate the mechanism of antioxidant function of BR. Our results indicated that as SFWS grows, levels of OS and antioxidant capacity increase dramatically, but providing BR to SFWS enhances antioxidant capacity while decreasing OS. Rumen microbiota and OS are strongly correlated, with total antioxidant capacity (T-AOC) showing a significant negative correlation with Succiniclasticum and a positive correlation with Ruminococcus. Importantly, the Chao1 index was significantly negatively correlated with malondialdehyde (MDA) and positively correlated with superoxide dismutase (SOD) and T-AOC. Two biomarkers connected to the antioxidant effects of BR, 5,6-DHET and LPA (a-25:0/0:0), were screened according to the results of metabolomics and Spearman analysis of rumen contents, and a significant relationship between the concentration of rumen metabolites and OS was found. Five metabolic pathways, including glycerolipid, glutathione, nucleotide, D-amino acid, and inositol phosphate metabolism, may have a role in OS. The integrated results indicate that rumen microbiota and metabolites are strongly related to OS and that BR is responsible for reducing OS and improving antioxidant capacity in post-weaned SFWS. These findings provide new strategies to reduce OS occurring during SFWS growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。