Reactive oxygen species contribute to the development of arrhythmogenic Ca²⁺ waves during β-adrenergic receptor stimulation in rabbit cardiomyocytes

活性氧在兔心肌细胞β-肾上腺素受体刺激过程中促进致心律失常性Ca²⁺波的形成

阅读:5
作者:Elisa Bovo, Stephen L Lipsius, Aleksey V Zima

Abstract

While β-adrenergic receptor (β-AR) stimulation leads to positive inotropic effects, it can also induce arrhythmogenic Ca2+ waves. β-AR stimulation increases mitochondrial oxygen consumption and, thereby, the production of reactive oxygen species (ROS). We therefore investigated the role of ROS in the generation of Ca2+ waves during β-AR stimulation in rabbit ventricular myocytes. Isoproterenol (ISO) increased Ca2+ transient amplitude during systole, sarcoplasmic reticulum (SR) Ca2+ load and the occurrence of Ca2+ waves during diastole. These effects, however, developed at different time points during ISO application.While SR Ca2+ release and load reached a maximum level after 3 min, Ca2+ waves occurred at the highest frequency only after 6 min of ISO application.Measurement of intra-SR-free Ca2+ concentration ([Ca2+]SR) showed an initial increase of SR Ca2+ load followed by a gradual decline over time during ISO application. This decline of [Ca2+]SR was not due to decreased SR Ca2+ uptake, but instead was the result of increased SRCa2+ leak mainly in the form of Ca2+ waves. ISO application led to significant RyR phosphorylation at the protein kinase A (PKA)-specific site, which remained relatively stable throughout β-AR activation.Moreover, β-AR stimulation significantly increased ROS production after 4–6 min of ISO application. The ROS scavenger Tiron and the superoxide dismutase mimetic MnTBPA abolished the ISO-mediated ROS production. The mitochondria-specific antioxidant Mito-Tempo and an inhibitor of the electron transport chain, rotenone, also effectively prevented the ISO-mediated ROS production. Scavenging ROS during ISO application decreased the occurrence of Ca2+ waves and partially prevented augmentation of SRCa2+ leak, but did not affect the increase of Ca2+ transient amplitude. Treatment of myocytes with ISO for 15 min significantly reduced the free thiol content in RyRs. These data suggest that increased mitochondrial ROS production during β-AR stimulation causes RyR oxidation. Together with RyR phosphorylation, oxidation of RyRs increases diastolic SR Ca2+ leak to a critical level leading to the generation of arrhythmogenic Ca2+ waves.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。