Engineered Extracellular Vesicle-Delivered CRISPR/CasRx as a Novel RNA Editing Tool

工程化细胞外囊泡递送 CRISPR/CasRx 作为新型 RNA 编辑工具

阅读:10
作者:Tianwen Li, Liansheng Zhang, Tao Lu, Tongming Zhu, Canbin Feng, Ni Gao, Fei Liu, Jingyu Yu, Kezhu Chen, Junjie Zhong, Qisheng Tang, Quan Zhang, Xiangyang Deng, Junwei Ren, Jun Zeng, Haibo Zhou, Jianhong Zhu

Abstract

Engineered extracellular vesicles (EVs) are considered excellent delivery vehicles for a variety of therapeutic agents, including nucleic acids, proteins, drugs, and nanomaterials. Recently, several studies have indicated that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) delivered by EVs enable efficient DNA editing. However, an RNA editing tool delivered by EVs is still unavailable. Here, a signal peptide-optimized and EVs-delivered guide RNA (gRNA) and CRISPR/CasRx (Cas13d) system capable of rapidly inhibiting the expression of targeted genes with quick catabolism after performing their functions is developed. EVs with CRISPR/CasRx and tandem gRNAs targeting pivotal cytokines are further packed whose levels increase substantially over the course of acute inflammatory diseases and find that these engineered EVs inhibit macrophage activation in vitro. More importantly, this system attenuates lipopolysaccharide (LPS)-triggered acute lung injury and sepsis in the acute phase, mitigating organ damage and improving the prognosis in vivo. In summary, a potent tool is provided for short-acting RNA editing, which could be a powerful therapeutic platform for the treatment of acute diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。