MICROGLIA AND INFILTRATING T-CELLS ADOPT LONG-TERM, AGE-SPECIFIC, TRANSCRIPTIONAL CHANGES AFTER TRAUMATIC BRAIN INJURY IN MICE

小鼠脑外伤后,小胶质细胞和浸润的T细胞会发生长期、年龄特异性的转录变化

阅读:1
作者:Zhangying Chen, Mecca B A R Islam ,Kacie P Ford ,Guangyuan Zhao ,Shang-Yang Chen, Yidan Wang, Booker T Davis 4th ,Alexios-Fotios A Mentis ,Steven J Schwulst

Abstract

Aged traumatic brain injury (TBI) patients suffer increased mortality and long-term neurocognitive and neuropsychiatric morbidity compared with younger patients. Microglia, the resident innate immune cells of the brain, are complicit in both. We hypothesized that aged microglia would fail to return to a homeostatic state after TBI and adopt a long-term injury-associated state within aged brains compared with young brains after TBI. Young and aged male C57BL/6 mice underwent TBI via controlled cortical impact versus sham injury and were sacrificed 4 months post-TBI. We used single-cell RNA sequencing to examine age-associated cellular responses after TBI. Brains were harvested, and CD45+ cells were isolated via fluorescence-activated cell sorting. cDNA libraries were prepared using the 10x Genomics Chromium Single Cell 3' Reagent Kit, followed by sequencing on a HiSeq 4,000 instrument and computational analyses. Post-injury, aged mice demonstrated a disparate microglial gene signature and an increase in infiltrating T cells compared with young adult mice. Notably, aged mice post-injury had a subpopulation of age-specific, immune-inflammatory microglia resembling the gene profile of neurodegenerative disease-associated microglia with enriched pathways involved in leukocyte recruitment and brain-derived neurotrophic factor signaling. Meanwhile, post-injury, aged mice demonstrated heterogeneous T-cell infiltration with gene profiles corresponding to CD8 effector memory, CD8 naive-like, CD8 early active T cells, and Th1 cells with enriched pathways, such as macromolecule synthesis. Taken together, our data showed that the aged brain had an age-specific gene signature change in both T-cell infiltrates and microglia, which may contribute to its increased vulnerability to TBI and the long-term sequelae of TBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。