Bioinformatics analysis and single-cell RNA sequencing: elucidating the ubiquitination pathways and key enzymes in lung adenocarcinoma

生物信息学分析与单细胞RNA测序:阐明肺腺癌中的泛素化途径和关键酶

阅读:5
作者:Tong Lu, Ran Xu, Chenghao Wang, Xiang Zhou, Rafael Parra-Medina, Roberto Díaz-Peña, Bo Peng, Linyou Zhang

Background

Lung adenocarcinoma (LUAD) is a prevalent subtype of lung cancer associated with high mortality rates. We aimed to utilize single-cell multiomics analysis to identify the key molecules involved in ubiquitination modification, which plays a role in LUAD development and progression.

Conclusions

This study examined ubiquitination modifications in LUAD using sequencing data, identifying PSMD14's critical role in malignancy regulation and its potential as a prognostic and therapeutic biomarker. These insights enhance understanding of LUAD mechanisms and treatment.

Methods

We use a systematic approach to analyze LUAD-related single-cell and bulk transcriptome datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Single-cell RNA sequencing (scRNA-seq) data were normalized, clustered, and annotated with the Seurat package in R. InferCNV was used to distinguish malignant from epithelial cells, and AUCell evaluated the area under the curve (AUC) score of ubiquitination-related enzymes. Survival and differential analyses identified significant molecular markers associated with ubiquitination. PSMD14 expression was confirmed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot assays, and its knockdown cell lines were assessed for effects on cellular processes and tumor formation in mice. PSMD14's interacting proteins were predicted, and its impact on AGR2 protein half-life and ubiquitination was evaluated. Rescue experiments involving PSMD14 overexpression and AGR2 silencing assessed their impact on malignant behaviors.

Results

By means of single-cell sequencing analysis, we probed the ubiquitination modification landscape in the LUAD microenvironment. Malignant cells had elevated scores for enzymes and ubiquitin-binding domains compared to normal epithelial cells, with 53 ubiquitination-related molecules showing prognostic disparities. FGR, PSMD14, and ZBTB16 were identified as genes with prognostic significance, with PSMD14 showing higher expression in epithelial and malignant cells. Two missense mutation sites were identified in PSMD14, which had a high copy number amplification ratio and positive correlation with messenger RNA (mRNA) expression. PSMD14 expression and tumor stage were found to be independent prognostic factors, and interfering with PSMD14 expression reduced the malignant behavior of LUAD cells. PSMD14 was found to bind to AGR2 protein and reduce its ubiquitination, leading to increased AGR2 stability. Knockdown of AGR2 inhibited the enhancement of cell viability, invasion, and migration resulting from PSMD14 overexpression. Conclusions: This study examined ubiquitination modifications in LUAD using sequencing data, identifying PSMD14's critical role in malignancy regulation and its potential as a prognostic and therapeutic biomarker. These insights enhance understanding of LUAD mechanisms and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。