Acetaminophen cytotoxicity is ameliorated in a human liver organotypic co-culture model

人类肝脏器官型共培养模型中对乙酰氨基酚的细胞毒性得到改善

阅读:6
作者:Leonard J Nelson, Maria Navarro, Philipp Treskes, Kay Samuel, Olga Tura-Ceide, Steven D Morley, Peter C Hayes, John N Plevris

Abstract

Organotypic liver culture models for hepatotoxicity studies that mimic in vivo hepatic functionality could help facilitate improved strategies for early safety risk assessment during drug development. Interspecies differences in drug sensitivity and mechanistic profiles, low predictive capacity, and limitations of conventional monocultures of human hepatocytes, with high attrition rates remain major challenges. Herein, we show stable, cell-type specific phenotype/cellular polarity with differentiated functionality in human hepatocyte-like C3A cells (enhanced CYP3A4 activity/albumin synthesis) when in co-culture with human vascular endothelial cells (HUVECs), thus demonstrating biocompatibility and relevance for evaluating drug metabolism and toxicity. In agreement with in vivo studies, acetaminophen (APAP) toxicity was most profound in HUVEC mono-cultures; whilst in C3A:HUVEC co-culture, cells were less susceptible to the toxic effects of APAP, including parameters of oxidative stress and ATP depletion, altered redox homeostasis, and impaired respiration. This resistance to APAP is also observed in a primary human hepatocyte (PHH) based co-culture model, suggesting bidirectional communication/stabilization between different cell types. This simple and easy-to-implement human co-culture model may represent a sustainable and physiologically-relevant alternative cell system to PHHs, complementary to animal testing, for initial hepatotoxicity screening or mechanistic studies of candidate compounds differentially targeting hepatocytes and endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。