Thymosin β10 promotes tumor-associated macrophages M2 conversion and proliferation via the PI3K/Akt pathway in lung adenocarcinoma

胸腺肽β10通过PI3K/Akt通路促进肺腺癌中肿瘤相关巨噬细胞M2转化和增殖

阅读:11
作者:Jun Zeng, Xianggui Yang, Li Yang, Wancheng Li, Yaxin Zheng

Background

Thymosin β10 (TMSB10) has been reported to play a protumorigenic role in a majority of solid cancers. However, the existence of TMSB10 in immune microenvironment may contribute to the pathogenesis of lung adenocarcinoma has not been previously explored. Method: TAMs-associated TMSB10 expression was evaluated by immunohistochemistry (IHC) in 184 lung adenocarcinomas. Xenograft mice model was established to investigate the effect of TMSB10 shRNA on TAMs phenotypes. The macrophages phenotype associated cytokines IL-6, IL-8, IL-12 and TNF-α were detected by ELISA after treated with TMSB10 shRNA or scramble. Furthermore, the target proteins were detected by immunoblotting.

Conclusions

These results demonstrate that TAMs-associated TMSB10 promotes tumor growth through increasing TAMs M2 conversion and proliferation via PI3K/Akt signaling pathway, providing a promising tumor biomarker for predicting prognosis and a potential therapeutic target for lung adenocarcinoma.

Results

We found that high TAMs-associated TMSB10 expression was significantly correlated with the advanced TNM stage and T3/T4 tumor size. And high TAMs-associated TMSB10 expression was significantly correlated with poor overall and progression-free survival of lung adenocarcinoma, acting as an independent prognostic factor for lung adenocarcinoma. Furthermore, we investigated the biological functions of TMSB10 in macrophages in vivo and in vitro. TMSB10 knockdown dramatically reduced TAMs, THP-1 and RAW264.7 cell proliferation, and promoted macrophages phenotype conversion of M2 to M1, and TMSB10 knockdown reduced the levels of p-Akt (Sec473), p-mTOR (Sec2448) and p-p70S6K (Thr389) without effect on Akt, mTOR and p70S6K expression. Conclusions: These results demonstrate that TAMs-associated TMSB10 promotes tumor growth through increasing TAMs M2 conversion and proliferation via PI3K/Akt signaling pathway, providing a promising tumor biomarker for predicting prognosis and a potential therapeutic target for lung adenocarcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。