Transcriptome analysis of growth heterosis in pearl oyster Pinctada fucata martensii

马氏珠母贝生长杂种优势的转录组分析

阅读:5
作者:Jingmiao Yang, Shaojie Luo, Junhui Li, Zhe Zheng, Xiaodong Du, Yuewen Deng

Abstract

Heterosis improves growth and survival of shellfish species. Although breeders have widely exploited heterosis, its underlying molecular mechanisms remain unclear. In this study, a 2 × 2 complete diallel cross was facilitated between two full-sib families to produce two inbred families (A and D) and their reciprocal hybrid families (B and C) of pearl oyster Pinctada fucata martensii. Growth traits of the four families were compared at the adult stages. Transcriptome analysis was conducted on the four families using an Illumina sequencing platform. The results revealed that the growth traits of the four families significantly varied (P < 0.05). The mid-parent heterosis values of shell length, shell height, shell width, shell weight, and total weight were 12.9%, 14.9%, 18.2%, 17.2%, and 33.2%, respectively. The B- and C-inbred (A and D) triads had 79 and 68 differentially expressed genes (DEGs), respectively, which were dominantly nonadditive, including overdominance, underdominance, and low-parent dominance. Gene ontology term analysis showed that the DEGs in the B- and C-inbred triads were enriched for metabolic process, cellular process cell part, binding, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs in the B- and C-inbred triads were involved in focal adhesion, the P13K-Akt signaling pathway, the mRNA surveillance pathway, and the focal adhesion pathway. The reliability of the sequencing data was confirmed by real-time polymerase chain reaction analysis of six growth-related genes. The findings of this study provide new insights into heterosis for growth traits and the design of genetic breeding programs for this species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。