The GLT-1 enhancer clavulanic acid suppresses cocaine place preference behavior and reduces GCPII activity and protein levels in the rat nucleus accumbens

GLT-1 增强剂克拉维酸可抑制可卡因位置偏好行为,并降低大鼠伏隔核中的 GCPII 活性和蛋白质水平

阅读:7
作者:Helene L Philogene-Khalid, Mary F Morrison, Nune Darbinian, Michael E Selzer, Joseph Schroeder, Scott M Rawls

Abstract

The β-lactam antibiotic ceftriaxone (CTX) is a glutamate transporter subtype 1 (GLT-1) enhancer that reduces cocaine reinforcing efficacy and relapse in rats, but pharmacokinetic liabilities limit translational utility. An attractive alternative is clavulanic acid (CLAV), a structurally related β-lactamase inhibitor and component of FDA-approved Augmentin. CLAV retains the GLT-1 enhancing effects of CTX but displays greater oral bioavailability, brain penetrability and negligible antibacterial activity. CLAV reduces morphine conditioned place preference (CPP) and ethanol consumption in rats, but knowledge about the efficacy of CLAV in preclinical models of drug addiction remains sparse. Here, we investigated effects of CLAV (10 mg/kg, IP) on the acquisition, expression, and maintenance of cocaine CPP in rats, and on two glutamate biomarkers associated with cocaine dependence, GLT-1 and glutamate carboxypeptidase II (GCPII). CLAV administered during cocaine conditioning (10 mg/kg, IP x 4 d) did not affect the development of cocaine CPP. However, a single CLAV injection, administered after the conditioning phase, reduced the expression of cocaine CPP. In rats with established cocaine preference, repeated CLAV administration facilitated extinction of cocaine CPP. In the nucleus accumbens, acute CLAV exposure reduced GCPII protein levels and activity, and a 10-d CLAV treatment regimen enhanced GLT-1 levels. These results suggest that CLAV reduces expression and maintenance of cocaine CPP but lacks effect against development of CPP. Moreover, the ability of a single injection of CLAV to reduce both GCPII activity and protein levels, as well as expression of cocaine CPP, points toward studying GCPII as a therapeutic target of CLAV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。