Background
Non-endoscopic cell collection devices combined with biomarkers can detect Barrett's intestinal metaplasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpretation of the disease pathology, and confirm biomarker validity.
Methods
The microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the amount of columnar epithelium present in pathology slides, and
