Indole-3-Propionic Acid, a Gut Microbiota-Derived Tryptophan Metabolite, Promotes Endothelial Dysfunction Impairing Purinergic-Induced Nitric Oxide Release in Endothelial Cells

吲哚-3-丙酸是一种肠道微生物衍生的色氨酸代谢物,可促进内皮功能障碍,从而损害嘌呤能诱导的内皮细胞一氧化氮释放

阅读:5
作者:Federica Geddo, Susanna Antoniotti, Maria Pia Gallo, Giulia Querio

Abstract

Different gut microbiota-derived metabolites influence cardiovascular function, and, among all, the role of indole-3-propionic acid (IPA), from tryptophan metabolism, shows controversial effects. The aim of this study was to evaluate its role in endothelial dysfunction. IPA effects were studied on bovine aortic endothelial cells (BAE-1). First, IPA cytotoxicity was evaluated by an MTS assay. Then, the levels of intracellular reactive oxygen species (ROS) were evaluated by a microplate reader or fluorescence microscopy with the CellROX® Green probe, and nitric oxide (NO) production was studied by fluorescence microscopy with the DAR4M-AM probe after acute or chronic treatment. Finally, immunoblotting analysis for endothelial nitric oxide synthase (eNOS) phosphorylation (p-eNOS) was performed. In BAE-1, IPA was not cytotoxic, except for the highest concentration (5 mM) after 48 h of treatment, and it showed neither oxidant nor antioxidant activity. However, the physiological concentration of IPA (1 μM) significantly reduced NO released by adenosine triphosphate (ATP)-stimulated BAE-1. These last data were confirmed by Western blot analysis, where IPA induced a significant reduction in p-eNOS in purinergic-stimulated BAE-1. Given these data, we can speculate that IPA negatively affects the physiological control of vascular tone by impairing the endothelial NO release induced by purinergic stimulation. These results represent a starting point for understanding the mechanisms underlying the relationship between gut microbiota metabolites and cardiometabolic health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。