Titanium Surfaces with a Laser-Produced Microchannel Structure Enhance Pre-Osteoblast Proliferation, Maturation, and Extracellular Mineralization In Vitro

具有激光产生的微通道结构的钛表面可增强体外成骨细胞增殖、成熟和细胞外矿化

阅读:5
作者:Yi-Wen Chen, Tao Chiang, I-Hui Chen, Da-Yo Yuh, Hsiu-Yang Tseng, Chuang-Wei Wang, Hsin-Han Hou

Abstract

The clinical success of dental titanium implants is profoundly linked to implant stability and osseointegration, which comprises pre-osteoblast proliferation, osteogenic differentiation, and extracellular mineralization. Because of the bio-inert nature of titanium, surface processing using subtractive or additive methods enhances osseointegration ability but limits the benefit due to accompanying surface contamination. By contrast, laser processing methods increase the roughness of the implant surface without contamination. However, the effects of laser-mediated distinct surface structures on the osteointegration level of osteoblasts are controversial. The role of a titanium surface with a laser-mediated microchannel structure in pre-osteoblast maturation remains unclear. This study aimed to elucidate the effect of laser-produced microchannels on pre-osteoblast maturation. Pre-osteoblast human embryonic palatal mesenchymal cells were seeded on a titanium plate treated with grinding (G), sandblasting with large grit and acid etching (SLA), or laser irradiation (L) for 3-18 days. The proliferation and morphology of pre-osteoblasts were evaluated using a Trypan Blue dye exclusion test and fluorescence microscopy. The mRNA expression, protein expression, and protein secretion of osteogenic differentiation markers in pre-osteoblasts were evaluated using reverse transcriptase quantitative polymerase chain reaction, a Western blot assay, and a multiplex assay, respectively. The extracellular calcium precipitation of pre-osteoblast was measured using Alizarin red S staining. Compared to G- and SLA-treated titanium surfaces, the laser-produced microchannel surfaces enhanced pre-osteoblast proliferation, the expression/secretion of osteogenic differentiation markers, and extracellular calcium precipitation. Laser-treated titanium implants may enhance the pre-osteoblast maturation process and provide extra benefits in clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。