Staphylococcus aureus directly activates eosinophils via platelet-activating factor receptor

金黄色葡萄球菌通过血小板活化因子受体直接激活嗜酸性粒细胞

阅读:7
作者:Koa Hosoki, Akiko Nakamura, Mizuho Nagao, Yukiko Hiraguchi, Hisashi Tanida, Reiko Tokuda, Hideo Wada, Tsutomu Nobori, Shigeru Suga, Takao Fujisawa

Abstract

Colonization by SA is associated with exacerbation of AD. Eosinophilic inflammation is a cardinal pathological feature of AD, but little is known about possible direct interaction between SA and eosinophils. PAFR appears to be involved in phagocytosis of Gram-positive bacteria by leukocytes. The objective of this study was to investigate whether SA directly induces eosinophil effector functions via PAFR in the context of AD pathogenesis. Peripheral blood eosinophils were cultured with heat-killed SA, and EDN release, superoxide generation, and adhesion to fibronectin-coated plates were measured. Cytokines, released in the supernatants, were quantified by multiplex bead immunoassays. FISH-labeled SA was incubated with eosinophils and visualized by confocal laser-scanning microscopy. PAFR-blocking peptide and PAFR antagonists were tested for inhibitory effects on SA-induced reactions. SA induced EDN release and superoxide generation by eosinophils in a dose-dependent manner. IL-5 significantly enhanced SA-induced EDN release. IL-5 and IL-17A significantly enhanced SA-induced superoxide generation. SA enhanced eosinophil adhesion to fibronectin, which was blocked by anti-CD49d, and induced eosinophil secretion of various cytokines/chemokines (IL-2R, IL-9, TNFR, IL-1 β, IL-17A, IP-10, TNF-α, PDGF-bb, VEGF, and FGF-basic). After incubation of eosinophils with SA, FISH-labeled SA was visualized in the eosinophils' cytoplasm, indicating phagocytosis. A PAFR-blocking peptide and two PAFR antagonists completely inhibited those reactions. In conclusion, SA directly induced eosinophil activation via PAFR. Blockade of PAFR may be a novel, therapeutic approach for AD colonized by SA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。