Detection of extracellular vesicles in the mouse vaginal fluid: Their delivery of sperm proteins that stimulate capacitation and modulate fertility

检测小鼠阴道液中的细胞外囊泡:它们传递刺激获能和调节生育能力的精子蛋白

阅读:6
作者:Zeinab Fereshteh, Pradeepthi Bathala, Deni S Galileo, Patricia A Martin-DeLeon

Abstract

Extracellular vesicles (EVs) were isolated by ultracentrifugation of vaginal luminal fluid (VLF) from superovulated mice and identified for the first time using transmission electron microscopy. Characterized by size and biochemical markers (CD9 and HSC70), EVs were shown to be both microvesicular and exosomal and were dubbed as "Vaginosomes" (VGS). Vaginal cross-sections were analyzed to visualize EVs in situ: EVs were present in the lumen and also embedded between squamous epithelial and keratinized cells, consistent with their endogenous origin. Western blots detected Plasma membrane Ca2+ -ATPase 1 (PMCA1) and tyrosine-phosphorylated proteins in the VGS cargo and also in uterosomes. Flow cytometry revealed that following coincubation of caudal sperm and VLF for 30 min, the frequencies of cells with the highest Sperm adhesion molecule 1 (SPAM1), PMCA1/4, and PMCA1 levels increased 16.4-, 8.2-, and 27-fold, respectively; compared with control coincubated in phosphate buffered saline (PBS). Under identical conditions, sperm tyrosine-phosphorylated proteins were elevated ~3.3-fold, after VLF coincubation. Progesterone-induced acrosome reaction (AR) rates were significantly (p < 0.001) elevated in sperm coincubated with VGS for 10-30 min, compared with PBS. Sperm artificially deposited in the vaginas of superovulated females for these periods also showed significant (p < 0.01) increases in AR rates, compared with PBS. Thus in vitro and in vivo, sperm acquire from the vaginal environment factors that induce capacitation, explaining recent findings for their acrosomal status in the isthmus. Overall, VGS appear to deliver higher levels of proteins involved in preventing premature capacitation and AR than those promoting them. Our findings which have implications for humans open the possibility of new approaches to infertility treatment with exosome therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。