Self-Powered Flow Rate Sensing via a Single-Electrode Flowing Liquid Based Triboelectric Nanogenerator

通过基于单电极流动液体的摩擦纳米发电机进行自供电流速传感

阅读:14
作者:Duy-Linh Vu, Quang-Tan Nguyen, Pil-Seung Chung, Kyoung-Kwan Ahn

Abstract

Recently, triboelectric nanogenerators (TENGs) have emerged as having an important role in the next wave of technology due to their large potential applications in energy harvesting and smart sensing. Recognizing this, a device based on TENGs, which can solve some of the problems in the liquid flow measurement process, was considered. In this paper, a new method to measure the liquid flow rate through a pipe which is based on the triboelectric effect is reported. A single-electrode flowing liquid-based TENG (FL-TENG) was developed, comprising a silicon pipe and an electrode coated with a polyvinylidene fluoride (PVDF) membrane. The measured electrical responses show that the FL-TENG can generate a peak open-circuit voltage and peak short-circuit current of 2.6 V and 0.3 µA when DI water is passed through an 8 mm cell FL-TENG at a flow rate of 130 mL/min and reach their maximum values of 17.8 V-1.57 µA at a flow rate of 1170 mL/min, respectively. Importantly, the FL-TENG demonstrates a robust linear correlation between its electrical output and the flow rate, with the correlation coefficient R2 ranging from 0.943 to 0.996. Additionally, this study explores the potential of the FL-TENG to serve as a self-powered sensor power supply in future applications, emphasizing its adaptability as both a flow rate sensor and an energy harvesting device.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。