TNEA therapy promotes the autophagic degradation of NLRP3 inflammasome in a transgenic mouse model of Alzheimer's disease via TFEB/TFE3 activation

TNEA 疗法通过激活 TFEB/TFE3 促进阿尔茨海默病转基因小鼠模型中 NLRP3 炎症小体的自噬降解

阅读:10
作者:Wenjia Lin, Zhao Li, Guangfeng Liang, Runjin Zhou, Xiaoyan Zheng, Rongrong Tao, Qingwei Huo, Chengfu Su, Min Li, Nenggui Xu, Chunzhi Tang, Ju-Xian Song

Background

The impairment in the autophagy-lysosomal pathway (ALP) and the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome represent two molecular events leading to neurodegeneration and neuroinflammation in Alzheimer's disease (AD), a devastating neurodegenerative disorder without a cure. Previously we demonstrated the cognitive-enhancing effect of a combined electroacupuncture (EA) therapy termed TNEA in a transgenic mouse model of AD, involving activation of transcription factor EB (TFEB), a master regulator of ALP. However, whether and how TNEA inhibits NLRP3 inflammasome via TFEB-mediated ALP in AD remains to be investigated.

Conclusion

Our findings suggest that TNEA attenuates AD-associated memory impairment via promoting TFEB/TFE3-mediated autophagic clearance of Aβ and NLRP3 inflammasome, and partially reveal the molecular basis of combined acupoints therapy originated from ancient wisdom.

Methods

5xFAD mice overexpressing amyloid-β (Aβ) were treated with TNEA or EA on its composing acupoints (GB13 and GV24). The changes in the signaling pathways regulating NLRP3 inflammasome, the association of NLRP3 inflammasome with ALP, and the roles of TFEB/TFE3 in mice brains were determined by immunoblots, immunohistochemistry and AAV-mediated knockdown assays.

Results

TNEA inhibits the activation of NLRP3 inflammasome and the release of active interleukin 1β (IL1B) in the hippocampi of 5xFAD mice. Mechanistically, TNEA promoted the autophagic degradation of inflammasome components via activating both TFEB and TFE3 by modulating kinases including AMPK and AKT. The composing acupoints in TNEA showed synergistic effects on regulating these molecular events and memory improvement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。