The long non-coding RNA Gm10768 activates hepatic gluconeogenesis by sequestering microRNA-214 in mice

长链非编码 RNA Gm10768 通过隔离小鼠中的 microRNA-214 激活肝脏糖异生

阅读:5
作者:Xianwei Cui, Jingmin Tan, Yujie Shi, Chen Sun, Yun Li, Chenbo Ji, Jun Wu, Zhao Zhang, Siyu Chen, Xirong Guo, Chang Liu

Abstract

Overactivated hepatic gluconeogenesis contributes to the pathogenesis of metabolic disorders, including type 2 diabetes. Precise control of hepatic gluconeogenesis is thus critical for maintaining whole-body metabolic homeostasis. Long non-coding RNAs (lncRNAs) have been shown to play key roles in diseases by regulating diverse biological processes, but the function of lncRNAs in maintaining normal physiology, particularly glucose homeostasis in the liver, remains largely unexplored. We identified a novel liver-enriched long non-coding RNA, Gm10768, and examined its expression patterns under pathophysiological conditions. We further adopted gain- and loss-of-function strategies to explore the effect of Gm10768 on hepatic glucose metabolism and the possible molecular mechanism involved. Our results showed that the expression of Gm10768 was significantly increased in the liver of fasted mice and was induced by gluconeogenic hormonal stimuli. Functionally, overexpression of Gm10768 activated hepatic gluconeogenesis in a cell-autonomous manner. In contrast, depletion of Gm10768 suppressed hepatic glucose production both in vitro and in vivo Adenovirus-mediated hepatic knockdown of Gm10768 improved glucose tolerance and hyperglycemia of diabetic db/db mice. Mechanistically, Gm10768 sequestrated microRNA-214 (miR-214) to relieve its suppression on activating transcription factor 4 (ATF4), a positive regulator of hepatic gluconeogenesis. Taken together, we identified Gm10768 as a new lncRNA activating hepatic gluconeogenesis through antagonizing miR-214 in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。