Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis

在小鼠实验性结肠炎中,组胺通过组胺 4 受体驱动先天性炎症的严重程度

阅读:6
作者:J B Wechsler, A Szabo, C L Hsu, R A Krier-Burris, H A Schroeder, M Y Wang, R G Carter, T E Velez, L M Aguiniga, J B Brown, M L Miller, B K Wershil, T A Barrett, P J Bryce

Abstract

Ulcerative colitis (UC) patients exhibit elevated histamine, but how histamine exacerbates disease is unclear as targeting histamine 1 receptor (H1R) or H2R is clinically ineffective. We hypothesized that histamine functioned instead through the other colon-expressed histamine receptor, H4R. In humans, UC patient biopsies exhibited increased H4R RNA and protein expression over control tissue, and immunohistochemistry showed that H4R was in proximity to immunopathogenic myeloperoxidase-positive neutrophils. To characterize this association further, we employed both the oxazolone (Ox)- and dextran sulfate sodium (DSS)-induced experimental colitis mouse models and also found upregulated H4R expression. Mast cell (MC)-derived histamine and H4R drove experimental colitis, as H4R-/- mice had lower symptom scores, neutrophil-recruitment mediators (colonic interleukin-6 (IL-6), CXCL1, CXCL2), and mucosal neutrophil infiltration than wild-type (WT) mice, as did MC-deficient KitW-sh/W-sh mice reconstituted with histidine decarboxylase-deficient (HDC-/-) bone marrow-derived MCs compared with WT-reconstituted mice; adaptive responses remained intact. Furthermore, Rag2-/- × H4R-/- mice had reduced survival, exacerbated colitis, and increased bacterial translocation than Rag2-/- mice, revealing an innate protective antibacterial role for H4R. Taken together, colonic MC-derived histamine initiates granulocyte infiltration into the colonic mucosa through H4R, suggesting alternative therapeutic targets beyond adaptive immunity for UC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。