Antagonist targeting microRNA-146a protects against lithium-pilocarpine-induced status epilepticus in rats by nuclear factor-κB pathway

针对 microRNA-146a 的拮抗剂通过核因子-κB 通路预防大鼠锂-匹罗卡品诱发的癫痫持续状态

阅读:5
作者:Huilong Zhang, Yun Qu, Aihua Wang

Abstract

Previous studies have indicated that nuclear factor-κB (NF-κB) has an important role in the pathogenesis of epilepsy. The aim of the present study was to evaluate the expression of microRNA (miRNA)‑146a, phosphorylated (p)‑P65/P65, B‑cell lymphoma‑2(Bcl‑2)/Bcl‑2‑associated X protein (Bax) and pro‑inflammatory cytokines, such as interleukin (IL)‑6, IL‑1β and tumor necrosis factor (TNF‑α) in the brain tissue of rats with epilepsy. Sprague‑Dawley rats were used to establish the epilepsy model using the lithium‑pilocarpine method. The expression of miR‑146a, pro‑inflammatory cytokines, P‑glycoprotein (P‑gp), Bcl‑2/Bax and p‑P65/P65 were assessed by reverse transcription‑semi‑quantitative polymerase chain reaction, enzyme‑linked immunosorbent assay and western blotting, respectively. Hematoxylin and eosin staining was used to determine the pathology of epilepsy. The current findings revealed that the expression of miR‑146a was greater in the model group compared with the control group, and that the expression of miR‑146a reached a maximum at 7 days post‑treatment. The expression levels of IL‑1β, IL‑6 and TNF‑α were significantly reduced in the miR‑146a antagonist group when compared with the model group. Additionally, the expression levels of P‑gp and p‑P65/P65 were significantly reduced following the addition of the miR‑146a antagonist, whereas the expression levels of Bcl‑2/Bax significantly increased under the same conditions. Therefore, the NF‑κB pathway and miR‑146a may be potential therapeutic targets in the treatment of epilepsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。