Wild-type p53 enhances endothelial barrier function by mediating RAC1 signalling and RhoA inhibition

野生型 p53 通过介导 RAC1 信号传导和 RhoA 抑制增强内皮屏障功能

阅读:5
作者:Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D Catravas

Abstract

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment resulted in reduced levels of active cofilin. Silencing of cofilin pyridoxal phosphate phosphatase (PDXP) blocked the LPS-induced hyper-permeability, and P53 inhibition reversed the 17AAG-induced PDXP down-regulation. P190RHOGAP suppression enhanced the LPS-triggered barrier dysfunction in endothelial monolayers. 17AAG treatment resulted in P190RHOGAP induction and blocked the LPS-induced pMLC2 up-regulation in wild-type mice. Pulmonary endothelial cells from "super p53" mice, which carry additional p53-tg alleles, exhibited a lower response to LPS than the controls. Collectively, our findings help elucidate the mechanisms by which p53 operates to enhance barrier function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。