1,25(OH)2D3 ameliorates doxorubicin‑induced cardiomyopathy by inhibiting the NLRP3 inflammasome and oxidative stress

1,25(OH)2D3 通过抑制 NLRP3 炎症小体和氧化应激改善阿霉素诱发的心肌病

阅读:4
作者:Xin Gu, Lin Zhao, Jiabao Ye, Lin Chen, Chenyan Sui, Baihong Li, Xiaoyan Wang, Jun Zhang, Yingqiang Du

Abstract

Doxorubicin (DOX), as a chemotherapy agent with marked therapeutic effect, can be used to treat certain types of cancer such as leukemia, lymphoma and breast cancer. However, the toxic effects of DOX on cardiomyocytes limit its clinical application. Oxidative stress has been documented to serve a pivotal role in DOX-induced cardiomyopathy. Previous studies have reported that 1,25(OH)2D3 has antioxidant and anti-inflammatory effects and can inhibit the renin-angiotensin system. However, the effects of 1,25(OH)2D3 on the pathophysiological processes of DOX-induced cardiomyopathy and its mechanisms remain poorly understood. To investigate these potential effects, C57BL/6J mice were used to construct a DOX-induced cardiomyopathy model and treated with 1,25(OH)2D3. At 4 weeks after the first injection of DOX, cardiac function and myocardial injury were evaluated by echocardiograph and ELISA. Masson's trichrome staining and RT-qPCR were used to assess myocardial fibrosis, and immunohistochemistry and western blotting were performed to analyze expression levels of inflammation and oxidative stress, and the NLRP3 inflammasome pathway. ChIP assay was used to assess the effects of 1,25(OH)2D3 on histone modification in the NLRP3 and Nrf2 promoters. The results showed that 1,25(OH)2D3 treatment increased LVEF and LVFS, reduced serum levels of BNP and cTnT, inhibited the collagen deposition and profibrotic molecular expression, and downregulated the levels of inflammatory cytokines in DOX-induced cardiomyopathy. ROS and antioxidant indices were also ameliorated after 1,25(OH)2D3 treatment. In addition, 1,25(OH)2D3 was found to inhibit the NLRP3 inflammasome and KEAP-Nrf2 pathways through regulation of the levels of H3K4me3, H3K27me3 and H2AK119Ub in the NLRP3 and Nrf2 promoters. In conclusion, the present study demonstrated that 1,25(OH)2D3 regulated histone modification in the NLRP3 and Nrf2 promoters, which in turn inhibits the activation of NLRP3 inflammasome and oxidative stress in cardiomyocytes, alleviating DOX-induced cardiomyopathy. Therefore, 1,25(OH)2D3 may be a potential drug candidate for the treatment of DOX-induced cardiomyopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。