Evaluation of Suitable Polymeric Matrix/Carriers during Loading of Poorly Water Soluble Drugs onto Mesoporous Silica: Physical Stability and In Vitro Supersaturation

在将难溶性药物负载到介孔二氧化硅过程中对合适的聚合物基质/载体的评估:物理稳定性和体外过饱和

阅读:5
作者:Afroditi Kapourani, Konstantinos Katopodis, Vasiliki Valkanioti, Melina Chatzitheodoridou, Christos Cholevas, Panagiotis Barmpalexis

Abstract

The application of mesoporous carriers in formulations of amorphous solid dispersions (ASDs) has been suggested to enhance the stability of amorphous drugs. However, mesoporous carriers do not demonstrate satisfactory inhibitory effects on the precipitation of active pharmaceutical ingredients (APIs), and the inclusion of an appropriate polymer within ASDs becomes imperative to maintaining drug supersaturation. The aim of this study was to evaluate ternary olanzapine (OLN) ASDs with Syloid 244FP and to find an appropriate polymeric carrier. The polymer's selection criteria were based on the physical stability of the ASDs and the release rate of the drug from the systems. The polymers investigated were hydroxypropylmethyl cellulose (HPMC) and copovidone (coPVP). The formation of ASDs was achievable in all investigated cases, as demonstrated by the complete lack of crystallinity confirmed through both powder X-ray diffraction (pXRD) analysis and differential scanning calorimetry (DSC) for all developed formulations. The solvent shift method was employed to evaluate the ability of the studied carriers to inhibit the precipitation of supersaturated OLN. coPVP emerged as a more suitable precipitation inhibitor compared with HPMC and Syloid 244 FP. Subsequently, in vitro dissolution studies under non-sink conditions revealed a higher degree of supersaturation in ternary systems where coPVP was used as a polymeric carrier, as these systems exhibited, under the examined conditions, up to a 2-fold increase in the released OLN compared with the pure crystalline drug. Moreover, stability studies conducted utilizing pXRD demonstrated that ternary formulations incorporating coPVP and Syloid 244 FP maintained stability for an extended period of 8 months. In contrast, binary systems exhibited a comparatively shorter stability duration, indicating the synergistic effect of coPVP and Syloid 244 FP on the physical stability of the amorphous API. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) studies showed that the development of stronger molecular interactions can be provided as an explanation for this synergistic effect, as the formation of robust H-bonds may be considered responsible for inhibiting the precipitation of the supersaturated API. Therefore, the incorporation of coPVP into OLN ASDs with Syloid 244 FP is considered a highly promising technique for increasing the degree of OLN supersaturation in in vitro dissolution studies and improving the stability of systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。