Decreased rates of cerebral protein synthesis measured in vivo in a mouse model of Tuberous Sclerosis Complex: unexpected consequences of reduced tuberin

结节性硬化症小鼠模型体内测量的脑蛋白质合成率降低:结节蛋白减少的意外后果

阅读:6
作者:Rachel Michelle Saré, Tianjian Huang, Tom Burlin, Inna Loutaev, Carolyn Beebe Smith

Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant neurogenetic disorder affecting about 1 in 6000 people and is caused by mutations in either TSC1 or TSC2. This disorder is characterized by increased activity of mammalian target of rapamycin complex 1 (mTORC1), which is involved in regulating ribosomal biogenesis and translation initiation. We measured the effects of Tsc2 haploinsufficiency (Tsc2+/- ) in 3-month-old male mice on regional rates of cerebral protein synthesis (rCPS) by means of the in vivo L-[1-14 C]leucine method. This quantitative autoradiographic method includes an estimate of the integrated specific activity of the tracer amino acid in brain tissue. The estimate accounts for recycling of unlabeled amino acids from tissue protein breakdown by means of a factor (λ) that was determined in control and Tsc2+/- mice. The value of λ was higher in Tsc2+/- mice, indicating that a greater fraction of leucine in the tissue precursor pool for protein synthesis is derived from the plasma compared to controls, consistent with reduced rates of protein degradation. We determined rCPS in freely moving, awake male Tsc2+/- and control mice, and we used the determined values of λ in the calculation of rCPS. Unexpectedly, we found that rCPS were significantly decreased in 16 of the 17 brain regions analyzed in Tsc2+/- mice compared to controls. Our results indicate a complex role of mTORC1 in the regulation of cerebral protein synthesis that has not been previously recognized.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。