Uveitis Therapy With Shark Variable Novel Antigen Receptor Domains Targeting Tumor Necrosis Factor Alpha or Inducible T-Cell Costimulatory Ligand

利用针对肿瘤坏死因子 α 或可诱导 T 细胞共刺激配体的鲨鱼可变新型抗原受体结构域治疗葡萄膜炎

阅读:6
作者:Kathryn L Pepple, Leslie Wilson, Russell N Van Gelder, Marina Kovaleva, Obinna C Ubah, John Steven, Caroline J Barelle, Andrew Porter

Conclusions

Treatment with the anti-TNFα VNAR S17-Fc ameliorates EAU as effectively as treatment with corticosteroids. Translational relevance: VNAR-Fc molecules are a next-generation therapeutic biologic that overcome the limitations of classical biologic monoclonal antibodies, such as complex structure, large size, and limited tissue penetration. This is a novel drug modality that could result in the development of new therapy options for patients with noninfectious uveitis.

Methods

Variable binding domains from shark immunoglobulin novel antigen receptors (VNARs) were fused with a mouse IgG2a constant domain (Fc) to generate VNAR-Fc molecules with binding specificity to tumor necrosis factor alpha (TNFα) or inducible T-cell costimulatory ligand (ICOSL). Treatment with VNAR-Fc fusion proteins was compared to treatment with dexamethasone or vehicle in the Lewis rat model of experimental autoimmune uveitis (EAU). Inflammation control was determined by comparing OCT clinical and histologic scores, and aqueous humor protein concentration. The concentration of 27 inflammatory cytokines in the aqueous humor was measured using a multiplex enzyme-linked immunosorbent assay platform.

Purpose

We assess the efficacy of two next-generation biologic therapies in treating experimental autoimmune uveitis.

Results

Administration of S17-Fc significantly decreased clinical, histologic, and aqueous protein levels when compared to vehicle treatment. Inflammation scores and aqueous protein levels in A5-Fc-treated animals were decreased compared to vehicle treatment, but not significantly. The concentration of vascular endothelial growth factor (VEGF), regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein 1 alpha (MIP-1α), interleukin (IL)-1β, LPS-induced CXC chemokine (LIX), monocyte chemoattractant protein-1 (MCP-1), and interferon (IFN)-γ were significantly decreased in the eyes of animals treated with dexamethasone. VNAR treatment demonstrated a trend towards decreased cytokine concentrations, but only VEGF and RANTES were significantly decreased by S17-Fc. Conclusions: Treatment with the anti-TNFα VNAR S17-Fc ameliorates EAU as effectively as treatment with corticosteroids. Translational relevance: VNAR-Fc molecules are a next-generation therapeutic biologic that overcome the limitations of classical biologic monoclonal antibodies, such as complex structure, large size, and limited tissue penetration. This is a novel drug modality that could result in the development of new therapy options for patients with noninfectious uveitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。