Priming of microcystin degradation in carbon-amended membrane biofilm communities is promoted by oxygen-limited conditions

氧受限条件促进碳修饰膜生物膜群落中微囊藻毒素的降解

阅读:4
作者:Marisa O D Silva, Jakob Pernthaler

Abstract

Microbial biofilms are an important element of gravity-driven membrane (GDM) filtration systems for decentralized drinking water production. Mature biofilms fed with biomass from the toxic cyanobacterium Microcystis aeruginosa efficiently remove the cyanotoxin microcystin (MC). MC degradation can be 'primed' by prior addition of biomass from a non-toxic M. aeruginosa strain. Increased proportions of bacteria with an anaerobic metabolism in M. aeruginosa-fed biofilms suggest that this 'priming' could be due to higher productivity and the resulting changes in habitat conditions. We, therefore, investigated GDM systems amended with the biomass of toxic (WT) or non-toxic (MUT) M. aeruginosa strains, of diatoms (DT), or with starch solution (ST). After 25 days, these treatments were changed to receiving toxic cyanobacterial biomass. MC degradation established significantly more rapidly in MUT and ST than in DT. Oxygen measurements suggested that this was due to oxygen-limited conditions in MUT and ST already prevailing before addition of MC-containing biomass. Moreover, the microbial communities in the initial ST biofilms featured high proportions of facultative anaerobic taxa, whereas aerobes dominated in DT biofilms. Thus, the 'priming' of MC degradation in mature GDM biofilms seems to be related to the prior establishment of oxygen-limited conditions mediated by higher productivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。