P2Y receptor regulation of K2P channels that facilitate K+ secretion by human mammary epithelial cells

P2Y 受体调节 K2P 通道,促进人类乳腺上皮细胞分泌 K+

阅读:8
作者:Yotesawee Srisomboon, Nathan A Zaidman, Peter J Maniak, Chatsri Deachapunya, Scott M O'Grady

Abstract

The objective of this study was to determine the molecular identity of ion channels involved in K+ secretion by the mammary epithelium and to examine their regulation by purinoceptor agonists. Apical membrane voltage-clamp experiments were performed on human mammary epithelial cells where the basolateral membrane was exposed to the pore-forming antibiotic amphotericin B dissolved in a solution with intracellular-like ionic composition. Addition of the Na+ channel inhibitor benzamil reduced the basal current, consistent with inhibition of Na+ uptake across the apical membrane, whereas the KCa3.1 channel blocker TRAM-34 produced an increase in current resulting from inhibition of basal K+ efflux. Treatment with two-pore potassium (K2P) channel blockers quinidine, bupivacaine and a selective TASK1/TASK3 inhibitor (PK-THPP) all produced concentration-dependent inhibition of apical K+ efflux. qRT-PCR experiments detected mRNA expression for nine K2P channel subtypes. Western blot analysis of biotinylated apical membranes and confocal immunocytochemistry revealed that at least five K2P subtypes (TWIK1, TREK1, TREK2, TASK1, and TASK3) are expressed in the apical membrane. Apical UTP also increased the current, but pretreatment with the PKC inhibitor GF109203X blocked the response. Similarly, direct activation of PKC with phorbol 12-myristate 13-acetate produced a similar increase in current as observed with UTP. These results support the conclusion that the basal level of K+ secretion involves constitutive activity of apical KCa3.1 channels and multiple K2P channel subtypes. Apical UTP evoked a transient increase in KCa3.1 channel activity, but over time caused persistent inhibition of K2P channel function leading to an overall decrease in K+ secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。