Oocyte Arrested at Metaphase II Stage were Derived from Human Pluripotent Stem Cells in vitro

体外从人类多能干细胞中获取中期 II 阶段停滞的卵母细胞

阅读:7
作者:Xiaoli Yu #, Ning Wang #, Xiang Wang #, Hehe Ren, Yanping Zhang, Yingxin Zhang, Yikai Qiu, Hongyan Wang, Guoping Wang, Xiuying Pei, Ping Chen, Yahui Ren, Chunfang Ha, Li Wang, Huayan Wang

Abstract

Initiation of meiosis is the most difficult aspect of inducing competent oocytes differentiation from human stem cells in vitro. Human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) were cultured with follicle fluid, cytokines and small molecule to induced oocyte-like cells (OLCs) formation through a three-step induction procedure. Expression of surface markers and differentiation potential of germ cells were analyzed in vitro by flow cytometry, gene expression, immunocytochemistry, western blotting and RNA Sequencing. To induce the differentiation of hiPSCs into OLCs, cells were firstly cultured with a primordial germ cell medium for 10 days. The cells exhibited similar morphological features to primordial germ cells (PGCs), high expressing of germ cell markers and primordial follicle development associated genes. The induced PGCs were then cultured with the primordial follicle-like cell medium for 5 days to form the induced follicle-like structures (iFLs), which retained both primordial oocytes-like cells and granulosa-like cells. In the third step, the detached iFLs were harvested and transferred to the OLC-medium for additional 10 days. The cultured cells developed cumulus-oocyte-complexes (COCs) structures and OLCs with different sizes (50-150 μm diameter) and a zona pellucida. The in vitro matured OLCs had polar bodies and were arrested at metaphase II (MII) stage. Some OLCs were self-activated and spontaneously developed into multiple-cell structures similar to preimplantation embryos, indicating that OLCs were parthenogenetically activated though in vitro fertilization potential of OLCs are yet to be proved. in vitro maturation of OLCs derived from hiPSCs provides a new means to study human germ cell formation and oogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。