Ac-SDKP ameliorates the progression of experimental autoimmune encephalomyelitis via inhibition of ER stress and oxidative stress in the hippocampus of C57BL/6 mice

Ac-SDKP 通过抑制 C57BL/6 小鼠海马中的 ER 应激和氧化应激来改善实验性自身免疫性脑脊髓炎的进展

阅读:5
作者:Sina Pejman, Maryam Kamarehei, Gholamhossein Riazi, Shahriar Pooyan, Saeed Balalaie

Abstract

Despite the attention given to the treatment of multiple sclerosis (MS), still no certain cure is available. The main purpose of MS drugs is acting against neuroinflammation which underlies the pathology of MS. Neuroinflammation is associated with endoplasmic reticulum (ER) stress that mediates neural apoptosis. In the present study, we hypothesized that the tetrapeptide N-acetyl-ser-asp-lys-pro (Ac-SDKP) with the previously described anti-fibrotic effects might have anti-inflammatory, anti-oxidative and anti-ER stress roles in the hippocampus. We used myelin oligodendrocyte glycoprotein (MOG) to induce experimental autoimmune encephalomyelitis (EAE), a widely-accepted animal model of MS, in C57BL/6 mice. The protein levels of ER stress-related molecules including caspase-12, C/EBP homologous protein (CHOP), and protein disulfide isomerase (PDI) in the hippocampus were examined by immunoblotting. Hence, reactive oxygen species (ROS) production, lipid peroxidation and antioxidant capacity of the hippocampus were studied. Moreover, hippocampal morphology changes, leukocytes infiltration, and the levels of IL-6 and IL-1β pro-inflammatory cytokines were evaluated. Our results displayed that Ac-SDKP down regulates caspase-12 and CHOP expression in the hippocampus-resident oligodendrocytes of EAE mice. Further, treatment with Ac-SDKP decreased oxidative stress markers and caspase-3 activation in the hippocampus of EAE mice. According to our findings, Ac-SDKP showed beneficial effects against ER stress and oxidative stress in addition to inflammation in the hippocampus of EAE mice. The present study provides the basis for further research on the therapeutic applications of Ac-SDKP to reduce ER stress and oxidative stress-induced apoptosis in neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。