Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model

干细胞对新型小鼠模型中脱细胞血管移植物新内膜形成的贡献

阅读:9
作者:Tsung-Neng Tsai, John Paul Kirton, Paola Campagnolo, Li Zhang, Qingzhong Xiao, Zhongyi Zhang, Wen Wang, Yanhua Hu, Qingbo Xu

Abstract

Artificial vessel grafts are often used for the treatment of occluded blood vessels, but neointimal lesions commonly occur. To both elucidate and quantify which cell types contribute to the developing neointima, we established a novel mouse model of restenosis by grafting a decellularized vessel to the carotid artery. Typically, the graft developed neointimal lesions after 2 weeks, resulting in lumen closure within 4 weeks. Immunohistochemical staining revealed the presence of endothelial and smooth muscle cells, monocytes, and stem/progenitor cells at 2 weeks after implantation. Explanted cultures of neointimal tissues displayed heterogeneous outgrowth in stem cell medium. These lesional cells expressed a panel of stem/progenitor markers, including c-kit, stem cell antigen-1 (Sca-1), and CD34. Furthermore, these cells showed clonogenic and multilineage differentiation capacities. Isolated Sca-1(+) cells were able to differentiate into endothelial and smooth muscle cells in response to vascular endothelial growth factor (VEGF) or platelet-derived growth factor (PDGF)-BB stimulation in vitro. In vivo, local application of VEGF to the adventitial side of the decellularized vessel increased re-endothelialization and reduced neointimal formation in samples at 4 weeks after implantation. A population of stem/progenitor cells exists within developing neointima, which displays the ability to differentiate into both endothelial and smooth muscle cells and can contribute to restenosis. Our findings also indicate that drugs or cytokines that direct cell differentiation toward an endothelial lineage may be effective tools in the prevention or delay of restenosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。